From LLM Prompt to Production (5/9) - Additional Complexity
This is part of a series of blogs:
- Introduction
- Choosing the Right Technology
- Architecture Patterns
- Multi-Prompt Chaining
- Additional Complexity
- Redundancy & Scaling
- Security & Compliance
- Performance Optimization
- Observability & Monitoring
When transforming an LLM prompt into a production-ready API, one of the most critical decisions you’ll face is choosing your LLM hosting strategy. This choice ripples through every aspect of your system architecture, from cost optimization to latency requirements, vendor lock-in concerns to compliance mandates.
The Hosting Decision Matrix: Standard APIs vs. AWS Bedrock
Standard LLM APIs: The Obvious Choice That Isn’t
At first glance, directly integrating with providers like OpenAI, Anthropic, or Perplexity seems straightforward. Their APIs are well-documented, their models are cutting-edge, and the integration appears trivial. However, production reality tells a different story.
Advantages:
- Latest model versions with frequent updates
- Comprehensive documentation and community support
- Simple integration for proof-of-concepts
- No infrastructure management overhead
Hidden Challenges:
- Rate limiting complexity: Each provider implements different throttling mechanisms
- Multi-region failover: Geographic distribution becomes your responsibility
- Cost unpredictability: Token-based pricing can spiral during traffic spikes
- Compliance gaps: Data residency and audit trails may not meet enterprise requirements
Here’s a typical direct integration pattern that looks deceptively simple:
// Direct OpenAI integration - looks simple, hides complexity
type DirectLLMClient struct {
apiKey string
httpClient *http.Client
rateLimiter *rate.Limiter
}
func (c *DirectLLMClient) GenerateCompletion(ctx context.Context, prompt string) (*CompletionResponse, error) {
// Rate limiting - but what about burst handling across multiple instances?
if err := c.rateLimiter.Wait(ctx); err != nil {
return nil, fmt.Errorf("rate limit exceeded: %w", err)
}
// Single endpoint - no failover, no region awareness
req := &CompletionRequest{
Model: "gpt-4",
Messages: []Message{{Role: "user", Content: prompt}},
MaxTokens: 1000,
}
// What about exponential backoff? Circuit breaking? Request correlation?
resp, err := c.makeAPICall(ctx, req)
if err != nil {
return nil, err
}
return resp, nil
}
This code works for demos but fails in production when you encounter rate limits, need geographic failover, or face unexpected API behavior changes.
AWS Bedrock: The Enterprise-Grade Alternative Deep Dive
AWS Bedrock isn’t just another API gateway—it’s a comprehensive foundation model service that fundamentally changes how you architect LLM-powered applications. Understanding its capabilities and limitations is crucial for making the right architectural decisions.
What Bedrock Actually Is (And Isn’t)
Bedrock provides a unified API layer over multiple foundation models from different providers, but it’s much more than a simple proxy. It’s an orchestration platform that includes:
Core Capabilities:
- Multi-provider model access: Claude (Anthropic), Titan (Amazon), Jurassic (AI21), Command (Cohere), and Llama models
- Serverless inference: No model hosting or infrastructure management
- Provisioned throughput: Dedicated capacity with guaranteed performance
- Custom model fine-tuning: Train specialized models on your data
- Knowledge bases: Managed RAG implementation with vector storage
- Guardrails: Content filtering and safety controls
- Model evaluation: Automated testing and comparison framework
What Bedrock Cannot Do:
- Real-time model switching: You can’t dynamically route requests to different providers based on response quality
- Cross-region model consistency: Model availability varies significantly by region
- Custom model architectures: You’re limited to fine-tuning, not architectural changes
- Streaming with all models: Some models don’t support response streaming
- Complex routing logic: No built-in A/B testing or canary deployment features
Here’s a comprehensive Bedrock implementation that showcases its production capabilities:
// CDK Infrastructure - the hidden complexity of production deployment
import * as cdk from "aws-cdk-lib";
import * as lambda from "aws-cdk-lib/aws-lambda";
import * as iam from "aws-cdk-lib/aws-iam";
import * as logs from "aws-cdk-lib/aws-logs";
import * as sqs from "aws-cdk-lib/aws-sqs";
import * as kms from "aws-cdk-lib/aws-kms";
export class LLMServiceStack extends cdk.Stack {
constructor(scope: Construct, id: string, props?: cdk.StackProps) {
super(scope, id, props);
// KMS key for encryption at rest and in transit
const bedrockKey = new kms.Key(this, "BedrockEncryptionKey", {
description: "KMS key for Bedrock LLM service encryption",
enableKeyRotation: true,
removalPolicy: cdk.RemovalPolicy.RETAIN,
});
// IAM role with fine-grained Bedrock permissions
const llmRole = new iam.Role(this, "LLMServiceRole", {
assumedBy: new iam.ServicePrincipal("lambda.amazonaws.com"),
managedPolicies: [
iam.ManagedPolicy.fromAwsManagedPolicyName(
"service-role/AWSLambdaBasicExecutionRole"
),
],
inlinePolicies: {
BedrockPolicy: new iam.PolicyDocument({
statements: [
new iam.PolicyStatement({
effect: iam.Effect.ALLOW,
actions: [
"bedrock:InvokeModel",
"bedrock:InvokeModelWithResponseStream",
"bedrock:GetFoundationModel",
"bedrock:ListFoundationModels",
],
resources: [
"arn:aws:bedrock:*::foundation-model/anthropic.claude-3-sonnet-*",
"arn:aws:bedrock:*::foundation-model/amazon.titan-*",
"arn:aws:bedrock:*::foundation-model/ai21.j2-*",
"arn:aws:bedrock:*::foundation-model/cohere.command-*",
],
}),
// Knowledge base access for RAG
new iam.PolicyStatement({
effect: iam.Effect.ALLOW,
actions: ["bedrock:RetrieveAndGenerate", "bedrock:Retrieve"],
resources: ["*"], // Specific knowledge base ARNs in production
}),
// Custom model access
new iam.PolicyStatement({
effect: iam.Effect.ALLOW,
actions: ["bedrock:InvokeModel"],
resources: [
`arn:aws:bedrock:${this.region}:${this.account}:custom-model/*`,
],
}),
],
}),
CloudWatchPolicy: new iam.PolicyDocument({
statements: [
new iam.PolicyStatement({
effect: iam.Effect.ALLOW,
actions: [
"cloudwatch:PutMetricData",
"logs:CreateLogGroup",
"logs:CreateLogStream",
"logs:PutLogEvents",
],
resources: ["*"],
}),
],
}),
},
});
// DLQ for failed processing with encryption
const dlq = new sqs.Queue(this, "LLMDLQueue", {
encryptionMasterKey: bedrockKey,
retentionPeriod: cdk.Duration.days(14),
});
// Lambda with comprehensive configuration
const llmFunction = new lambda.Function(this, "LLMProcessor", {
runtime: lambda.Runtime.PROVIDED_AL2,
handler: "bootstrap",
code: lambda.Code.fromAsset("dist/"),
role: llmRole,
timeout: cdk.Duration.minutes(5),
memorySize: 1024, // Higher memory for better performance
environment: {
BEDROCK_REGION: this.region,
LOG_LEVEL: "INFO",
KMS_KEY_ID: bedrockKey.keyId,
ENABLE_XRAY_TRACING: "true",
},
deadLetterQueue: dlq,
reservedConcurrentExecutions: 100, // Prevent runaway costs
logGroup: new logs.LogGroup(this, "LLMLogGroup", {
retention: logs.RetentionDays.ONE_MONTH,
encryptionKey: bedrockKey,
}),
});
// CloudWatch alarms for monitoring
llmFunction.metricErrors().createAlarm(this, "LLMErrorAlarm", {
threshold: 5,
evaluationPeriods: 2,
treatMissingData: cloudwatch.TreatMissingData.NOT_BREACHING,
});
llmFunction.metricDuration().createAlarm(this, "LLMLatencyAlarm", {
threshold: 30000, // 30 seconds
evaluationPeriods: 3,
});
}
}
The Bedrock Production Implementation
The corresponding Go implementation reveals the sophistication required for production readiness:
// Production-ready Bedrock client with comprehensive capabilities
type BedrockLLMService struct {
client *bedrockruntime.Client
knowledgeClient *bedrock.Client
modelConfig map[string]ModelConfiguration
metrics *CloudWatchMetrics
guardrails *GuardrailsService
fallbackChain []string
circuitBreaker *CircuitBreaker
}
type ModelConfiguration struct {
MaxTokens int `json:"max_tokens"`
Temperature float32 `json:"temperature"`
TopP float32 `json:"top_p"`
FallbackModel string `json:"fallback_model"`
TimeoutMs int `json:"timeout_ms"`
RetryAttempts int `json:"retry_attempts"`
CostPerToken float64 `json:"cost_per_token"`
PerformanceScore float64 `json:"performance_score"`
}
type BedrockCapabilities struct {
SupportedModels []ModelInfo `json:"supported_models"`
RegionalAvailability map[string][]string `json:"regional_availability"`
ProvisionedThroughput bool `json:"provisioned_throughput_available"`
CustomModelSupport bool `json:"custom_model_support"`
KnowledgeBaseRAG bool `json:"knowledge_base_rag"`
GuardrailsEnabled bool `json:"guardrails_enabled"`
}
func NewBedrockService(region string, config *BedrockConfig) (*BedrockLLMService, error) {
// Initialize AWS session with proper configuration
cfg, err := awsconfig.LoadDefaultConfig(context.TODO(),
awsconfig.WithRegion(region),
awsconfig.WithRetryMode(aws.RetryModeStandard),
awsconfig.WithRetryMaxAttempts(3),
)
if err != nil {
return nil, fmt.Errorf("failed to load AWS config: %w", err)
}
// Circuit breaker for resilience
cb := &CircuitBreaker{
MaxFailures: 5,
Timeout: 30 * time.Second,
OnStateChange: func(name string, from, to State) {
log.Printf("Circuit breaker %s changed from %v to %v", name, from, to)
},
}
service := &BedrockLLMService{
client: bedrockruntime.NewFromConfig(cfg),
knowledgeClient: bedrock.NewFromConfig(cfg),
modelConfig: loadModelConfigurations(config),
metrics: NewCloudWatchMetrics(region),
guardrails: NewGuardrailsService(cfg),
circuitBreaker: cb,
}
// Initialize model availability and capabilities
if err := service.initializeCapabilities(); err != nil {
return nil, fmt.Errorf("failed to initialize capabilities: %w", err)
}
return service, nil
}
func (b *BedrockLLMService) initializeCapabilities() error {
// Query available models in the region
listModelsInput := &bedrock.ListFoundationModelsInput{}
result, err := b.knowledgeClient.ListFoundationModels(context.TODO(), listModelsInput)
if err != nil {
return fmt.Errorf("failed to list foundation models: %w", err)
}
// Build capability matrix
capabilities := &BedrockCapabilities{
SupportedModels: make([]ModelInfo, 0),
RegionalAvailability: make(map[string][]string),
}
for _, model := range result.ModelSummaries {
modelInfo := ModelInfo{
ModelId: *model.ModelId,
ModelName: *model.ModelName,
ProviderName: *model.ProviderName,
InputModalities: model.InputModalities,
OutputModalities: model.OutputModalities,
ResponseStreaming: model.ResponseStreamingSupported != nil && *model.ResponseStreamingSupported,
CustomizationSupported: model.CustomizationsSupported != nil && len(model.CustomizationsSupported) > 0,
}
capabilities.SupportedModels = append(capabilities.SupportedModels, modelInfo)
}
b.capabilities = capabilities
return nil
}
func (b *BedrockLLMService) ProcessRequest(ctx context.Context, req *LLMRequest) (*LLMResponse, error) {
startTime := time.Now()
// Input validation and guardrails
if err := b.guardrails.ValidateInput(req.Content); err != nil {
b.metrics.RecordViolation("input_guardrail", req.UseCase)
return nil, fmt.Errorf("input validation failed: %w", err)
}
// Model selection with intelligent fallback
selectedModel, err := b.selectOptimalModel(req)
if err != nil {
return nil, fmt.Errorf("model selection failed: %w", err)
}
// Circuit breaker protection
response, err := b.circuitBreaker.Execute(func() (interface{}, error) {
return b.invokeModelWithFallback(ctx, selectedModel, req)
})
if err != nil {
b.metrics.RecordError("model_invocation", err)
return nil, fmt.Errorf("model invocation failed: %w", err)
}
llmResponse := response.(*LLMResponse)
// Output validation and guardrails
if err := b.guardrails.ValidateOutput(llmResponse.Content); err != nil {
b.metrics.RecordViolation("output_guardrail", req.UseCase)
// Return sanitized response or retry with different model
return b.handleOutputViolation(ctx, req, err)
}
// Success metrics and cost tracking
duration := time.Since(startTime)
b.metrics.RecordLatency("model_invocation", duration)
b.metrics.RecordCost("model_usage", b.calculateCost(selectedModel, llmResponse.TokenUsage))
return llmResponse, nil
}
func (b *BedrockLLMService) selectOptimalModel(req *LLMRequest) (string, error) {
// Multi-criteria decision matrix for model selection
candidates := b.getAvailableModels(req.Region)
scorer := &ModelScorer{
CostWeight: 0.3,
PerformanceWeight: 0.4,
LatencyWeight: 0.3,
UseCaseOptimization: req.UseCase,
}
bestModel := ""
bestScore := 0.0
for _, model := range candidates {
config, exists := b.modelConfig[model]
if !exists {
continue
}
score := scorer.CalculateScore(model, config, req)
if score > bestScore {
bestScore = score
bestModel = model
}
}
if bestModel == "" {
return "", errors.New("no suitable model found for request")
}
log.Printf("Selected model %s with score %.2f for use case %s", bestModel, bestScore, req.UseCase)
return bestModel, nil
}
func (b *BedrockLLMService) invokeModelWithFallback(ctx context.Context, modelId string, req *LLMRequest) (*LLMResponse, error) {
// Try primary model
response, err := b.invokeModel(ctx, modelId, req)
if err == nil {
return response, nil
}
// Determine if fallback is appropriate
if !b.shouldFallback(err) {
return nil, err
}
// Try fallback models in order
fallbacks := b.getFallbackChain(modelId)
for _, fallbackModel := range fallbacks {
log.Printf("Attempting fallback to model %s due to error: %v", fallbackModel, err)
response, fallbackErr := b.invokeModel(ctx, fallbackModel, req)
if fallbackErr == nil {
b.metrics.RecordFallback("successful_fallback", modelId, fallbackModel)
return response, nil
}
// Log fallback failure but continue trying
log.Printf("Fallback model %s also failed: %v", fallbackModel, fallbackErr)
}
// All fallbacks failed
b.metrics.RecordError("all_fallbacks_failed", err)
return nil, fmt.Errorf("primary model and all fallbacks failed: %w", err)
}
When to Choose Bedrock: The Decision Framework
The choice between Bedrock and direct LLM APIs isn’t binary—it depends on a complex matrix of technical, business, and operational factors. Here’s a comprehensive decision framework:
Choose Bedrock When:
1. Regulatory Compliance is Non-Negotiable
- Data residency requirements: Financial services, healthcare, government
- Audit trail mandates: SOC 2, HIPAA, GDPR compliance
- Encryption at rest/transit: Enterprise security requirements
- Access control integration: AWS IAM, corporate identity providers
2. Multi-Model Strategy is Essential
- Vendor risk mitigation: Avoiding single-provider dependency
- Use case optimization: Different models for different tasks
- Cost optimization: Model arbitrage based on pricing and performance
- Future-proofing: Easy adoption of new models as they become available
3. AWS Ecosystem Integration Adds Value
- Existing AWS infrastructure: Lambda, ECS, EKS workloads
- Data pipeline integration: S3, Glue, EMR, Kinesis
- Monitoring and alerting: CloudWatch, X-Ray integration
- Cost management: Consolidated billing and cost allocation
4. Scale and Reliability Requirements
- High availability: Multi-AZ deployment requirements
- Predictable performance: Provisioned throughput needs
- Enterprise SLAs: 99.9%+ uptime requirements
- Geographic distribution: Multi-region deployment strategy
Choose Direct APIs When:
1. Cutting-Edge Model Access is Critical
- Latest model versions: Immediate access to new capabilities
- Research and development: Experimental features and beta access
- Rapid prototyping: Quick proof-of-concept development
- Specialized models: Provider-specific innovations
2. Cost Optimization is Primary
- Simple usage patterns: Predictable, low-volume workloads
- Single model focus: No need for multi-provider strategy
- Startup constraints: Minimal infrastructure overhead preferred
- Development/testing: Non-production environments
3. Provider-Specific Features
- Custom integrations: OpenAI plugins, Anthropic Constitutional AI
- Specialized APIs: DALL-E, Codex, provider-specific tools
- Community ecosystem: Extensive third-party integrations
- Documentation and support: Provider-specific resources
The Hybrid Approach: Best of Both Worlds
Many production systems benefit from a hybrid strategy:
// Hybrid LLM client that uses both Bedrock and direct APIs
type HybridLLMClient struct {
bedrockClient *BedrockLLMService
directClients map[string]DirectLLMClient
router *RequestRouter
config *HybridConfig
}
type RoutingDecision struct {
Provider string `json:"provider"`
Model string `json:"model"`
Reasoning string `json:"reasoning"`
CostImpact float64 `json:"cost_impact"`
Confidence float64 `json:"confidence"`
}
func (h *HybridLLMClient) ProcessRequest(ctx context.Context, req *LLMRequest) (*LLMResponse, error) {
// Intelligent routing based on request characteristics
routing := h.router.DetermineRouting(req)
switch routing.Provider {
case "bedrock":
// Use Bedrock for production workloads
return h.bedrockClient.ProcessRequest(ctx, req)
case "openai", "anthropic", "perplexity":
// Use direct APIs for specific capabilities
client := h.directClients[routing.Provider]
return client.ProcessRequest(ctx, req)
default:
return nil, fmt.Errorf("unknown provider: %s", routing.Provider)
}
}
func (r *RequestRouter) DetermineRouting(req *LLMRequest) *RoutingDecision {
// Multi-factor routing decision
factors := &RoutingFactors{
Compliance: req.RequiresCompliance,
Latency: req.LatencyRequirement,
Cost: req.CostSensitivity,
ModelVersion: req.RequiresLatestModel,
Region: req.Region,
UseCase: req.UseCase,
}
// Apply business rules for routing
if factors.Compliance {
return &RoutingDecision{
Provider: "bedrock",
Model: r.getBestBedrockModel(req),
Reasoning: "compliance requirements mandate AWS Bedrock",
Confidence: 0.95,
}
}
if factors.RequiresLatestModel && r.isLatestVersionAvailable(req.PreferredModel) {
return &RoutingDecision{
Provider: r.getProviderForModel(req.PreferredModel),
Model: req.PreferredModel,
Reasoning: "latest model version required",
Confidence: 0.85,
}
}
// Cost-based routing for price-sensitive workloads
if factors.CostSensitivity == "high" {
cheapestOption := r.findCheapestOption(req)
return cheapestOption
}
// Default to Bedrock for production stability
return &RoutingDecision{
Provider: "bedrock",
Model: r.getBestBedrockModel(req),
Reasoning: "default production routing to Bedrock for reliability",
Confidence: 0.80,
}
}
Bedrock Limitations and Workarounds
Understanding Bedrock’s limitations is crucial for setting realistic expectations:
1. Model Availability Lag
- Problem: New models appear weeks/months after direct API availability
- Workaround: Hybrid approach with direct APIs for cutting-edge features
- Monitoring: Automated checks for new model availability
2. Regional Inconsistency
- Problem: Not all models available in all AWS regions
- Workaround: Multi-region deployment with intelligent routing
- Planning: Capacity planning based on regional model availability
3. Customization Limitations
- Problem: Limited to fine-tuning, no architectural modifications
- Workaround: Combine with SageMaker for custom model hosting
- Strategy: Hybrid architecture for specialized requirements
4. Cost Complexity
- Problem: AWS pricing model adds infrastructure costs
- Workaround: Detailed cost modeling and optimization
- Monitoring: Real-time cost tracking and alerting
Cost Economics: The Hidden Variables
Direct API Costs: The Token Trap
Direct LLM APIs charge per token, which seems transparent but hides several cost optimization challenges:
- Prompt inefficiency: Poorly optimized prompts can triple your costs
- Context window waste: Including unnecessary context burns tokens
- Rate limit penalties: Failed requests still consume quota and budget
- Model selection impact: Premium models cost 10-50x more than base models
AWS Bedrock Economics: The Infrastructure Trade-off
Bedrock pricing includes both model costs and AWS infrastructure overhead:
- Provisioned throughput: Fixed costs for guaranteed capacity
- On-demand pricing: Per-token pricing with AWS markup
- Data transfer costs: Cross-region and internet egress charges
- Supporting services: CloudWatch, VPC endpoints, and monitoring costs
The cost comparison isn’t straightforward. Here’s a framework for analysis:
// Cost optimization analyzer for production decision-making
type CostAnalyzer struct {
directAPICosts map[string]float64 // Provider -> cost per 1K tokens
bedrockCosts map[string]float64 // Model -> cost per 1K tokens
infraCosts InfrastructureCosts
trafficPatterns TrafficAnalysis
}
type CostProjection struct {
Monthly float64 `json:"monthly_cost"`
PerRequest float64 `json:"cost_per_request"`
BreakevenVolume int64 `json:"breakeven_monthly_requests"`
OptimizationTips []string `json:"optimization_recommendations"`
}
func (c *CostAnalyzer) ProjectCosts(scenario CostScenario) *CostProjection {
// Direct API cost calculation
directCost := c.calculateDirectAPICost(scenario)
// Bedrock total cost of ownership
bedrockCost := c.calculateBedrockTCO(scenario)
// Factor in hidden costs: monitoring, debugging, multi-region setup
directCostAdjusted := directCost * c.getComplexityMultiplier(scenario.Architecture)
return &CostProjection{
Monthly: bedrockCost,
PerRequest: bedrockCost / float64(scenario.MonthlyRequests),
BreakevenVolume: c.calculateBreakeven(directCostAdjusted, bedrockCost),
OptimizationTips: c.generateOptimizations(scenario),
}
}
The RAG Decision: When Context Enhancement Becomes Essential
Vector-Based RAG: The Sophisticated Approach
Vector databases like Pinecone, Weaviate, or AWS OpenSearch enable semantic similarity matching for context retrieval. This approach shines when you need:
- Semantic understanding: Finding contextually relevant information beyond keyword matching
- Large knowledge bases: Searching through millions of documents efficiently
- Dynamic context: Real-time updates to the knowledge base
However, vector RAG introduces significant complexity:
// Vector RAG implementation - the complexity behind the scenes
type VectorRAGService struct {
vectorDB VectorDatabase
embedder EmbeddingService
llmClient LLMClient
cache *Cache
chunker DocumentChunker
}
type RetrievalResult struct {
Documents []Document `json:"documents"`
Similarities []float64 `json:"similarities"`
Metadata map[string]interface{} `json:"metadata"`
}
func (v *VectorRAGService) EnhancedGeneration(ctx context.Context, query string) (*EnhancedResponse, error) {
// Query embedding - API call with latency implications
queryVector, err := v.embedder.CreateEmbedding(ctx, query)
if err != nil {
return nil, fmt.Errorf("query embedding failed: %w", err)
}
// Vector search - database query with relevance scoring
retrieved, err := v.vectorDB.SimilaritySearch(ctx, queryVector, 5, 0.7)
if err != nil {
return nil, fmt.Errorf("vector search failed: %w", err)
}
// Context optimization - balancing relevance vs token limits
optimizedContext := v.optimizeContext(retrieved, query)
// Enhanced prompt construction with retrieved context
enhancedPrompt := v.buildRAGPrompt(query, optimizedContext)
// LLM generation with extended context
response, err := v.llmClient.Generate(ctx, enhancedPrompt)
if err != nil {
return nil, fmt.Errorf("LLM generation failed: %w", err)
}
return &EnhancedResponse{
Generated: response,
Sources: retrieved,
Confidence: v.calculateConfidence(retrieved),
}, nil
}
Prompt Enhancement: The Pragmatic Alternative
For many use cases, simply enhancing the prompt with additional context proves more effective and maintainable:
// Simple but effective prompt enhancement strategy
type PromptEnhancer struct {
contextDB RelationalDB
templateMgr TemplateManager
validator ContentValidator
}
func (p *PromptEnhancer) EnhancePrompt(ctx context.Context, baseQuery string, userContext UserContext) (string, error) {
// Direct database query - faster than vector similarity
relevantData, err := p.contextDB.GetRelevantContext(ctx, userContext.Domain, userContext.Role)
if err != nil {
return "", fmt.Errorf("context retrieval failed: %w", err)
}
// Template-based enhancement - predictable and debuggable
template := p.templateMgr.GetTemplate(userContext.UseCase)
enhancedPrompt := template.Render(map[string]interface{}{
"query": baseQuery,
"domain_context": relevantData.DomainSpecificInfo,
"user_role": userContext.Role,
"business_rules": relevantData.BusinessRules,
"examples": relevantData.FewShotExamples,
})
// Content validation and safety checks
if err := p.validator.ValidateContent(enhancedPrompt); err != nil {
return "", fmt.Errorf("content validation failed: %w", err)
}
return enhancedPrompt, nil
}
The Production Reality: Why Simple Isn’t Simple
What appears to be a straightforward integration decision becomes a complex architectural challenge when you factor in:
- Reliability requirements: 99.9% uptime demands sophisticated error handling and failover
- Scale economics: Cost optimization requires deep understanding of usage patterns
- Compliance mandates: Enterprise requirements add layers of complexity
- Performance expectations: Latency SLAs drive architecture decisions
The path from prototype to production is littered with hidden complexities that can derail projects and budgets. Understanding these challenges upfront—and architecting solutions that address them—separates successful LLM integrations from expensive failures.
Building production-ready LLM systems requires navigating dozens of architectural decisions, each with far-reaching implications. At Yantratmika Solutions, we’ve helped organizations avoid the common pitfalls and build systems that scale. The devil, as always, is in the implementation details.